Skip to main content

Random number generators, reproducibility and sampling with dplyr


Let's assume that you want to take some random observations from your data set. Dplyr helps you with the function sample_n(). To make your code reproducible you seed the ID of a “random” set of values. You need to indicate number of rows you want to extract and specify if the rows should be replaced or not. To show you how it works I will use again mtcars dataset which is included in your base R program. Let's see first six rows of this data frame. 
library(dplyr)
data("mtcars")
head(mtcars)
                   mpg cyl disp  hp drat    wt  qsec vs am gear carb
Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1

sample_n() sample n numbers of random rows 

set.seed(10) 
mtcars%>%sample_n(4,replace = T) # We will take four random rows from mtcars data frame

                   mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4

sample_frac() is proportional sampling where you need to indicate fraction e.g 0.2 (20%) 

mtcars%>% sample_frac(size=0.2,replace=F) # We will take randomly 20% of mtcars data frame.

                   mpg cyl  disp  hp drat   wt  qsec vs am gear carb
Camaro Z28         13.3   8 350.0 245 3.73 3.84 15.41  0  0    3    4
Cadillac Fleetwood 10.4   8 472.0 205 2.93 5.25 17.98  0  0    3    4
Maserati Bora      15.0   8 301.0 335 3.54 3.57 14.60  0  1    5    8
Merc 280           19.2   6 167.6 123 3.92 3.44 18.30  1  0    4    4
Duster 360         14.3   8 360.0 245 3.21 3.57 15.84  0  0    3    4
Ford Pantera L     15.8   8 351.0 264 4.22 3.17 14.50  0  1    5    4 

In terms of testing for sampling error, in case of big datasets and large sample size, both methods (random and proportional) deliver similar results. Proportional sampling is a better approach for smaller datasets, for smaller sample sizes and if relative group proportions matter. 

Comments

Popular posts from this blog

Ggplot2 for data visualizations

 When I have started my adventure with R, immediately I've noticed that everybody was taking about ggplot2 and its importance.  Tap "ggplot2"  in google and check it by yourself.  You will see a lots of professional fancy graphs, articles, blogs and other great materials.  I was so impressed  that I was even trying to start my learning of R programming from ggplot2.  Soon I understood, that I needed some basics first and it is better to take time if you are starting from zero. Before jumping to the ggplot2 structure I will share with you some tips I find useful. First it is good to remember that there are some steps while you explore your data. Most of the time you have to collect data first,  do some pre-processing and exploration,  modelling & analysis and only after comes visualization. Of course in previous steps,  graphs also can be helpful to interpret the situation correctly however it is important that you have prepared, clea...

Basic Statistics for Time Series

What we can say about the time series data at the beginning? How we can describe it and what elements determinate the method we will use to forecast the data? For my own personal use I have prepared some notes which help me to answer questions above. I was using some definitions from the book of "Forecasting: Principles & Practice" by Rob J Hyndman like also some other blog's article like: https://towardsdatascience.com/descriptive-statistics-in-time-series-modelling Basic Statistics for Time Series When you make sure that your data has time series class, you can check the data with the basic functions we have in R. ts() is useful to build Time Series from scratch. mean() shows the average of a set of data. median() shows the middle value of the arranged set of data. plot() shows on the graph how the Time series looks like sort() sort the data quantile() function returns quantiles which are cut points dividing the range of a probability distribution into continuous ...