Skip to main content

The Power of dplyr in R - part 2

Let's continue our adventure with dplyr package. In the previous article I introduced select() function which select a subset of columns. Today we will focus on how to pick the observation and add a new column. We will continue using mtcars dataset which is included in your R base program.

Also I would like to say that all the posts I publish here requires basic knowledge of R and R Studio program. If you are totally new in R and don't have it installed on your computer I strongly recommend you to find some on-line tutorials and start with R fundamentals.

library(dplyr)
data("mtcars")
head(mtcars)

Now, let's introduce function:

filter()    filter a subset of rows (pick the observation) 

head(filter(.data=mtcars,mpg>20 & vs==0)) #filter rows where mpg>20 and vs= 0
          mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Mazda RX4      21   6 160.0 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag  21   6 160.0 110 3.90 2.875 17.02  0  1    4    4
Porsche 914-2  26   4 120.3  91 4.43 2.140 16.70  0  1    5    2


filter() with between() function:

filter(.data=mtcars,between(mpg,18,20)) #filter rows where values of mpg are between 18 and 2
                    mpg cyl  disp  hp drat    wt  qsec vs am gear  carb
Hornet Sportabout 18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
Valiant           18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
Merc 280          19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
Pontiac Firebird  19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
Ferrari Dino      19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6


slice()  select rows using their position - rows IDs (integer location) 

slice(.data = mtcars, 1:3) #choosing first three rows of the mtcars dataset

               mpg cyl disp  hp drat    wt  qsec vs am gear carb
Mazda RX4     21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag 21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
Datsun 710    22.8   4  108  93 3.85 2.320 18.61  1  1    4    1


mutate()  compute a new column (add a new variable while keeping the base variables) 

head(mutate(.data=mtcars,new=mpg/cyl)) #add a new variable while keeping the base variables

  mpg  cyl disp  hp  drat  wt  qsec  vs am  gear carb    new
1 21.0   6  160 110 3.90 2.620 16.46  0  1    4    4 3.500000
2 21.0   6  160 110 3.90 2.875 17.02  0  1    4    4 3.500000
3 22.8   4  108  93 3.85 2.320 18.61  1  1    4    1 5.700000
4 21.4   6  258 110 3.08 3.215 19.44  1  0    3    1 3.566667
5 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2 2.337500
6 18.1   6  225 105 2.76 3.460 20.22  1  0    3    1 3.016667


transmute()  calculates new variables while dropping the base ones. 

head(transmute(.data=mtcars,new=mpg/cyl)) #calculates new variables while dropping the base ones.

new
1 3.500000
2 3.500000
3 5.700000
4 3.566667
5 2.337500
6 3.016667

Comments

Popular posts from this blog

Random number generators, reproducibility and sampling with dplyr

Let's assume that you want to take some random observations from your data set. Dplyr helps you with the function sample_n(). To make your code reproducible you seed the ID of a “random” set of values. You need to indicate number of rows you want to extract and specify if the rows should be replaced or not. To show you how it works I will use again mtcars dataset which is included in your base R program. Let's see first six rows of this data frame.  library(dplyr) data("mtcars") head(mtcars)                    mpg cyl disp  hp drat    wt  qsec vs am gear carb Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4 Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4 Datsun 710        22.8   4  108  93 3.85 2.320 18.61...

Ggplot2 for data visualizations

 When I have started my adventure with R, immediately I've noticed that everybody was taking about ggplot2 and its importance.  Tap "ggplot2"  in google and check it by yourself.  You will see a lots of professional fancy graphs, articles, blogs and other great materials.  I was so impressed  that I was even trying to start my learning of R programming from ggplot2.  Soon I understood, that I needed some basics first and it is better to take time if you are starting from zero. Before jumping to the ggplot2 structure I will share with you some tips I find useful. First it is good to remember that there are some steps while you explore your data. Most of the time you have to collect data first,  do some pre-processing and exploration,  modelling & analysis and only after comes visualization. Of course in previous steps,  graphs also can be helpful to interpret the situation correctly however it is important that you have prepared, clea...

Basic Statistics for Time Series

What we can say about the time series data at the beginning? How we can describe it and what elements determinate the method we will use to forecast the data? For my own personal use I have prepared some notes which help me to answer questions above. I was using some definitions from the book of "Forecasting: Principles & Practice" by Rob J Hyndman like also some other blog's article like: https://towardsdatascience.com/descriptive-statistics-in-time-series-modelling Basic Statistics for Time Series When you make sure that your data has time series class, you can check the data with the basic functions we have in R. ts() is useful to build Time Series from scratch. mean() shows the average of a set of data. median() shows the middle value of the arranged set of data. plot() shows on the graph how the Time series looks like sort() sort the data quantile() function returns quantiles which are cut points dividing the range of a probability distribution into continuous ...